Experimental challenges of shear rheology: how to avoid bad data

نویسندگان

  • Randy H. Ewoldt
  • Michael T. Johnston
  • Lucas M. Caretta
چکیده

A variety of measurement artifacts can be blamed for misinterpretations of shear-thinning, shear-thickening, and viscoelastic responses, when the material does not actually have these properties. The softness and activity of biological materials will often magnify the challenges of experimental rheological measurements. The theoretical definitions of rheological material functions are based on stress, strain, and strain-rate components in simple deformation fields. In reality, one typically measures loads and displacements at the boundaries of a sample, and the calculation of true stress and strain may be encumbered by instrument resolution, instrument inertia, sample inertia, boundary effects, and volumetric effects. Here we discuss these common challenges in measuring shear material functions in the context of soft, water-based, and even living biological complex fluids. We discuss techniques for identifying and minimizing experimental errors and for pushing the experimental limits of rotational shear rheometers. Two extreme case studies are used: an ultra-soft aqueous polymer/fiber network (hagfish defense gel), and an activelyswimming suspension of microalgae (Dunaliella primolecta). Randy H. Ewoldt Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA e-mail: [email protected] Michael T. Johnston Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA e-mail: [email protected] Lucas M. Caretta Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA e-mail: [email protected] 1 Author-generated preprint, to appear as: Ewoldt, R.H., M.T. Johnston, L.M. Caretta, "Experimental challenges of shear rheology: how to avoid bad data," in: S. Spagnolie (Editor), Complex Fluids in Biological Systems, Springer (2015)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A design principle for vascular beds: the effects of complex blood rheology.

We propose a design principle that extends Murray's original optimization principle for vascular architecture to account for complex blood rheology. Minimization of an energy dissipation function enables us to determine how rheology affects the morphology of simple branching networks. The behavior of various physical quantities associated with the networks, such as the wall shear stress and the...

متن کامل

Shear banding in soft glassy materials.

Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic 'glassy' features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in part...

متن کامل

Improved Rheological Model of Oil-Based Drilling Fluid for South-western Iranian Oilfields

In this study, predictive capabilities of apparent viscosity of oil-based drilling fluids which is used in National Iranian South Oilfields Company (NISOC) were evaluated using Newtonian and non-Newtonian models to drive a new suitable equation. The non-Newtonian models include Bingham plastic, Power law, Herschel-Bulkley, Casson, and Robertson-Stiff. To validate the results, the calculated vis...

متن کامل

Modeling the Time-Dependent Rheological Properties of Pistachio Butter

Pistachio butter (semi solid paste), which is made from roasted pistachio kernels, is an appropriate alternative to work on because of its high nutritional and economical values. In this study, timedependent flow properties of pistachio butter were determined at two different temperatures (25˚C and 45˚C) for five different formulations (with different levels of emulsifying agents). Forward a...

متن کامل

Colloidal Microdynamics: Pair-drag Simulations of Model-concentrated Aggregated Systems

We report results of simulations of a model for concentrated aggregated colloidal dispersions under shear flows. In an effort to study trends in rheology for varying colloidal interactions, we study a reduced hydrodynamic, frame-invariant, pair-drag model in which a long-range, many-body mobility matrix is generated just from resistance pair-drag terms that include lubrication. The model also i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014